English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9562987      線上人數 : 17710
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/69195


    題名: GEE Modeling with Longitudinal Binary Data: Goodness-of-Fit Assessment via Local Polynomial Smoothing
    作者: Lin, K. C.;Chen, Y. J.
    貢獻者: 淡江大學統計學系
    關鍵詞: Bootstrap;GEE model;Goodness-of-fit;Logistic regression;Longitudinal binary data;Nonparametric smoothing
    日期: 2009-03-01
    上傳時間: 2011-10-23 16:33:56 (UTC+8)
    摘要: Analysis of longitudinal binary data is often accomplished by using GEE methodology to estimate the marginal model parameters. Most of current goodness-of-fit tests for GEE models have been studied in parametric situations. In this article, we consider to develop an alternative assessment for GEE models utilizing nonparametric technique. The proposed test avoided the explosion of a large number of additional parameters and dependence on partition of covariate space. Even though exact expectation and variance of the proposed test statistic are analytically and computationally infeasible, approximated values based on bootstrap data are employed. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution, and comparison of the proposed test and the current methods with respect to power are discussed by simulation studies. In addition, the testing procedure is illustrated by a medical study from Koch et al. [12].
    關聯: International Journal of Intelligent Technology ; Applied Statistics 2, pp.77-88
    DOI: 10.6148/IJITAS.2009.0201.06
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    GEE Modeling with Longitudinal Binary Data Goodness-of-Fit Assessment via Local Polynomial Smoothing.pdf4374KbAdobe PDF1檢視/開啟
    index.html0KbHTML98檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋