English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385347      線上人數 : 238
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/69191


    題名: Estimators which are Uniformly better than the James-Stein Estimator
    作者: Pal, Nabendu;Lin, Jyh-jiuan
    貢獻者: 淡江大學統計學系
    日期: 1997
    上傳時間: 2011-10-23 16:33:12 (UTC+8)
    摘要: Assume i.i.d. observations are available from a p-dimensional multivariate normal distribution with an unknown mean vector μ and an unknown p .d. diaper- . sion matrix ∑. Here we address the problem of mean estimation in a decision theoretic setup. It is well known that the unbiased as well as the maximum likelihood estimator of μ is inadmissible when p ≤ 3 and is dominated by the famous James-Stein estimator (JSE). There are a few estimators which are better than the JSE reported in the literature, but in this paper we derive wide classes of estimators uniformly better than the JSE. We use some of these estimators for further risk study.
    關聯: Calcutta Statistical Association Bulletin 47(187-188), pp.167-179
    DOI: 10.1177%2F0008068319970304
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML133檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋