English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58237/91808 (63%)
造访人次 : 13788060      在线人数 : 51
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69190

    题名: Estimation of exponential regerssion parameters using binary data
    作者: Cheng, K.F.;Wu, Jong-wuu
    贡献者: 淡江大學統計學系
    关键词: Exponential regression;least square method;binary data;maximum likelihood estimate
    日期: 1992-08
    上传时间: 2013-05-31 11:38:36 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Exponential regression model is important in analyzing data from heterogeneous populations. In this paper we propose a simple method to estimate the regression parameters using binary data. Under certain design distributions, including ellipticaily symmetric distributions, for the explanatory variables, the estimators are shown to be consistent and asymptotically normal when sample size is large. For finite samples, the new estimates were shown to behave reasonably well. They are competitive with the maximum likelihood estimates and more importantly, according to our simulation results, the cost of CPU time for computing new estimates is only 1/7 of that required for computing the usual maximum likelihood estimates. We expect the savings in CPU time would be more dramatic with larger dimension of the regression parameter space.
    關聯: Communications in Statistics: Theory and Methods 21(8), pp.2203-2214
    DOI: 10.1080/03610929208830907
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈