English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 49378/84106 (59%)
造访人次 : 7378500      在线人数 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69156


    题名: A study of local linear ridge regression estimators
    作者: 鄧文舜;Deng, Wen-shuenn;Chu, C.K.;Cheng, M.Y.
    贡献者: 淡江大學統計學系
    关键词: Asymptotic behavior;Boundary effect;Finite-sample behavior;Local linear ridge regression estimator;Local linear estimator;nonparametric regression;Ridge regression
    日期: 2001
    上传时间: 2011-10-23 16:26:16 (UTC+8)
    摘要: In the case of the random design nonparametric regression, to correct for the unbounded finite-sample variance of the local linear estimator (LLE), Seifert and Gasser (J. Amer. Statist. Assoc. 91 (1996) 267–275) apply the idea of ridge regression to the LLE, and propose the local linear ridge regression estimator (LLRRE). However, the finite sample and the asymptotic properties of the LLRRE are not discussed there. In this paper, upper bounds of the finite-sample variance and bias of the LLRRE are obtained. It is shown that if the ridge regression parameters are not properly selected, then the resulting LLRRE has some drawbacks. For example, it may have a nonzero constant asymptotic bias, may suffer from boundary effects, or may be unable to share the nice asymptotic bias quality of the LLE. On the other hand, if the ridge regression parameters are properly selected, then the resulting LLRRE does not suffer from the above problems, and has the same asymptotic mean-square error as the LLE. For this purpose, the ridge regression parameters are allowed to depend on the sample size, and converge to 0 as the sample size increases. In practice, to select both the bandwidth and the ridge regression parameters, the idea of cross-validation is applied. Simulation studies demonstrate that the LLRRE using the cross-validated bandwidth and ridge regression parameters could have smaller sample mean integrated square error than the LLE using the cross-validated bandwidth, in reasonable sample sizes.
    關聯: Journal of statistical planning ; inference 93(1-2), pp.225-238
    DOI: 10.1016/S0378-3758(00)00161-0
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈