English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51931/87076 (60%)
造訪人次 : 8481811      線上人數 : 105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69149


    題名: A Procedure of Selecting All Good Populations Under Heteroscedasticity
    作者: Wu, Shu-Fei;Yu, Yuh-Ru
    貢獻者: 淡江大學統計學系
    關鍵詞: One-stage;Percentage points;Percentage points;Select all good populations whose mean does not fall too much below the best one;Simultaneous inference;Student t distribution;Two-stage
    日期: 2008-10
    上傳時間: 2013-05-31 11:38:12 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Suppose that k normal populations with means μ1,…, μ k and variances are considered. When variances are unknown and equal, Lam (1986) proposed a procedure to select all good populations, where a population is good if μ i ≥ μ[k] − ϵ and μ[k] is the largest normal mean among k normal means. When variances are unknown and possibly unequal, a two-stage procedure selecting all good populations such that the probability of correct selection being at least a pre-specified value of P* is proposed. Without decreasing the probability of correct selection, the confidence interval of pairwise differences of all means to the largest normal mean is presented with the selection procedure. When the additional samples at the second stage could be costly, a data-analysis one-stage procedure selecting all good population is proposed. At last, one real-life example is given to illustrate all procedures.
    關聯: Communications in Statistics - Simulation and Computation 38(1), pp.46-57
    DOI: 10.1080/03610910802395661
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML39檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋