English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55178/89446 (62%)
造訪人次 : 10661366      線上人數 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/68806


    題名: 供應鏈協同運輸管理之出貨預測模式研究
    作者: 溫裕弘;李書賢
    貢獻者: 淡江大學運輸管理學系
    關鍵詞: 供應鏈協同;協同運輸管理;出貨預測;灰色預測模式;Supply chain collaboration;Collaborative transportation management;Shipment forecasting;Grey forecasting model
    日期: 2008-12
    上傳時間: 2011-10-23 13:58:44 (UTC+8)
    出版者: 中華民國運輸學會
    摘要: 在供應鏈協同運輸管理架構下,出貨預測為整體業務流程之關鍵核心基礎,為物流運送業者預測貨主未來出貨量、發展趨勢與波動,作為其運輸網路規劃、路線排程、車隊規劃之基礎。本研究因應不同供應鏈協同關係機制,建構數列預測與多元系統預測模式,並首嘗試整合灰數(Grey number)的概念於灰色預測模式中,分析協同運輸管理架構中不同程度資訊共享之下,物流運送業者進行出貨預測與出貨量波動範圍之掌握。數列預測主要建構在物流運送人與貨主廠商之協同機制下,利用歷史出貨量與協同資訊共享預測出貨量;多元系統預測則整合供應鏈上下游廠商之協同架構,考慮貨主廠商上下游供應鏈活動特性與協同資訊共享,物流運送業者進行出貨預測。藉由實證範例分析,本研究建構之出貨預測模式預測能力較多元迴歸模式、時間數列模式與類神經網路模式佳;而在協同資訊共享程度越高下,物流運送業者對於未來出貨量幅值範圍掌握能力越佳。本研究結果不僅在學術上可作為供應鏈協同運輸管理之出貨預測研究之參考,所發展之模式亦可提供相關協同運輸管理之供應鏈智能系統預測模組開發之模式理論基礎。
    Shipment forecasting is a critical foundation in the business process of supply chain collaborative transportation management (CTM), that is prerequisite to carriers' tactical and operational planning, such as network planning, routing, scheduling, and fleet planning and assignment. This study extends and improves grey forecasting theory and develops a series of shipment forecasting models for CTM. In shipment forecasting, consider different collaborative frameworks, both grey time-series forecasting and grey systematic forecasting models are developed. This study first attempts to integrate the grey number in shipment forecasting models, in order to analyze shipment forecasting under partial information sharing in CTM frameworks. A case study with an IC (Integrated Circuit) supply chain and other relevant data was provided to illustrate the results. The proposed models are shown to be more accurate prediction results than multiple regression, ARIMA and neural network models. Finally, the results indicate that the more information sharing under CTM, the carriers can predict more accurately. This study demonstrates how the proposed forecasting models might be applied to the CTM system and provides as the model theoretical basis for the forecasting module developed for the supply chain CTM intelligence.
    關聯: 中華民國運輸學會97年年會暨國際學術論文研討會論文集=Proceedings of International Conference And Annual Meeting of Chinese Institute of Transportation,21頁
    顯示於類別:[運輸管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    供應鏈協同運輸管理之出貨預測模式研究_中文摘要.docx摘要17KbMicrosoft Word155檢視/開啟
    供應鏈協同運輸管理之出貨預測模式研究_英文摘要.docx摘要17KbMicrosoft Word65檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋