English  |  正體中文  |  简体中文  |  Items with full text/Total items : 53760/88386 (61%)
Visitors : 10525532      Online Users : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/68806


    Title: 供應鏈協同運輸管理之出貨預測模式研究
    Authors: 溫裕弘;李書賢
    Contributors: 淡江大學運輸管理學系
    Keywords: 供應鏈協同;協同運輸管理;出貨預測;灰色預測模式;Supply chain collaboration;Collaborative transportation management;Shipment forecasting;Grey forecasting model
    Date: 2008-12
    Issue Date: 2011-10-23 13:58:44 (UTC+8)
    Publisher: 中華民國運輸學會
    Abstract: 在供應鏈協同運輸管理架構下,出貨預測為整體業務流程之關鍵核心基礎,為物流運送業者預測貨主未來出貨量、發展趨勢與波動,作為其運輸網路規劃、路線排程、車隊規劃之基礎。本研究因應不同供應鏈協同關係機制,建構數列預測與多元系統預測模式,並首嘗試整合灰數(Grey number)的概念於灰色預測模式中,分析協同運輸管理架構中不同程度資訊共享之下,物流運送業者進行出貨預測與出貨量波動範圍之掌握。數列預測主要建構在物流運送人與貨主廠商之協同機制下,利用歷史出貨量與協同資訊共享預測出貨量;多元系統預測則整合供應鏈上下游廠商之協同架構,考慮貨主廠商上下游供應鏈活動特性與協同資訊共享,物流運送業者進行出貨預測。藉由實證範例分析,本研究建構之出貨預測模式預測能力較多元迴歸模式、時間數列模式與類神經網路模式佳;而在協同資訊共享程度越高下,物流運送業者對於未來出貨量幅值範圍掌握能力越佳。本研究結果不僅在學術上可作為供應鏈協同運輸管理之出貨預測研究之參考,所發展之模式亦可提供相關協同運輸管理之供應鏈智能系統預測模組開發之模式理論基礎。
    Shipment forecasting is a critical foundation in the business process of supply chain collaborative transportation management (CTM), that is prerequisite to carriers' tactical and operational planning, such as network planning, routing, scheduling, and fleet planning and assignment. This study extends and improves grey forecasting theory and develops a series of shipment forecasting models for CTM. In shipment forecasting, consider different collaborative frameworks, both grey time-series forecasting and grey systematic forecasting models are developed. This study first attempts to integrate the grey number in shipment forecasting models, in order to analyze shipment forecasting under partial information sharing in CTM frameworks. A case study with an IC (Integrated Circuit) supply chain and other relevant data was provided to illustrate the results. The proposed models are shown to be more accurate prediction results than multiple regression, ARIMA and neural network models. Finally, the results indicate that the more information sharing under CTM, the carriers can predict more accurately. This study demonstrates how the proposed forecasting models might be applied to the CTM system and provides as the model theoretical basis for the forecasting module developed for the supply chain CTM intelligence.
    Relation: 中華民國運輸學會97年年會暨國際學術論文研討會論文集=Proceedings of International Conference And Annual Meeting of Chinese Institute of Transportation,21頁
    Appears in Collections:[Graduate Institute & Department of Transportation Management] Proceeding

    Files in This Item:

    File Description SizeFormat
    供應鏈協同運輸管理之出貨預測模式研究_中文摘要.docx摘要17KbMicrosoft Word148View/Open
    供應鏈協同運輸管理之出貨預測模式研究_英文摘要.docx摘要17KbMicrosoft Word64View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback