淡江大學機構典藏:Item 987654321/68723
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10667223      在线人数 : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/68723


    题名: Hybrid models toward traffic detector data treatment and data fusion
    作者: Wen, Yuh-horng;Lee, Tsu-tian;Cho, Hsun-jung;Lee, Tsu-tian;Cho, Hsun-jung
    贡献者: 淡江大學運輸管理學系
    日期: 2005-03
    上传时间: 2011-10-23 13:42:57 (UTC+8)
    出版者: IEEE Systems, Man, and Cybernetics Society
    摘要: This paper develops a data processing with hybrid models toward data treatment and data fusion for traffic detector data on freeways. hybrid grey-theory-based pseudo-nearest neighbor method and grey time-series model are developed to recover spatial and temporal data failures. Both spatial and temporal patterns of traffic data are also considered in travel time data fusion. Two travel time data fusion models are presented using a speed-based link travel time extrapolation model for analytical travel time estimation and a recurrent neural network with grey-models for real-time travel time prediction. Field data from the Taiwan national freeway no. 1 were used as a case study for testing the proposed models. Study results shown that the data treatment models for faulty data recovery were accurate. The data fusion models were capable of accurately predicting travel times. The results indicated that the proposed hybrid data processing approaches can ensure the accuracy of travel time estimation with incomplete data sets.
    關聯: Proceedings of the 2005 IEEE International Conference on Networking, pp.525-530
    DOI: 10.1109/ICNSC.2005.1461245
    显示于类别:[運輸管理學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈