English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55184/89457 (62%)
造訪人次 : 10676851      線上人數 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/68723

    題名: Hybrid models toward traffic detector data treatment and data fusion
    作者: Wen, Yuh-horng;Lee, Tsu-tian;Cho, Hsun-jung;Lee, Tsu-tian;Cho, Hsun-jung
    貢獻者: 淡江大學運輸管理學系
    日期: 2005-03
    上傳時間: 2011-10-23 13:42:57 (UTC+8)
    出版者: IEEE Systems, Man, and Cybernetics Society
    摘要: This paper develops a data processing with hybrid models toward data treatment and data fusion for traffic detector data on freeways. hybrid grey-theory-based pseudo-nearest neighbor method and grey time-series model are developed to recover spatial and temporal data failures. Both spatial and temporal patterns of traffic data are also considered in travel time data fusion. Two travel time data fusion models are presented using a speed-based link travel time extrapolation model for analytical travel time estimation and a recurrent neural network with grey-models for real-time travel time prediction. Field data from the Taiwan national freeway no. 1 were used as a case study for testing the proposed models. Study results shown that the data treatment models for faulty data recovery were accurate. The data fusion models were capable of accurately predicting travel times. The results indicated that the proposed hybrid data processing approaches can ensure the accuracy of travel time estimation with incomplete data sets.
    關聯: Proceedings of the 2005 IEEE International Conference on Networking, pp.525-530
    DOI: 10.1109/ICNSC.2005.1461245
    顯示於類別:[運輸管理學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋