淡江大學機構典藏:Item 987654321/68577
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3877099      在线人数 : 217
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/68577


    题名: Asset write-offs prediction by support vector machine and logistic regression
    作者: 鄭啟斌;Wu, C.-W.;Chen, C.-L.
    贡献者: 淡江大學資訊管理學系
    日期: 2010-11-06
    上传时间: 2011-10-23 13:17:26 (UTC+8)
    摘要: The purpose of asset write-offs by a firm is to provide an accurate valuation of the firm and to reveal its true business performance from the perspective of economic conditions. However, the decision to write-off assets might be manipulated by the manager of the firm and thus misguide the public to an incorrect firm value. The aim of this study is to provide quantitative prediction models for asset write-offs based on both firms' financial and managerial incentive factors. The prediction is achieved in two stages, where the first stage conducts a binary prediction of the occurrence of asset write-offs by a firm, while the second stage predicts the magnitude of such asset write-offs if they took place. The prediction models are constructed by support vector machine (SVM) and logistic regression for the binary decision of asset write-offs, and support vector regression (SVR) and linear regression for the write-off magnitude. The performances of different models are compared in terms of various criteria. Moreover, the bagging approach is used to reduce the variance in samples to improve prediction performance. Computational results from empirical data show the prediction performances of SVM/SVR are moderately superior to their counterpart logit/linear models. Moreover, the prediction accuracy varies with the distinctive types of asset write-offs.
    關聯: International Journal of Applied Science and Engineering 8(1), pp.47-63
    DOI: 10.6703%2fIJASE.2010.8(1).47
    显示于类别:[資訊管理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Asset write-offs prediction by support vector machine and logistic regression.pdf822KbAdobe PDF1检视/开启
    index.html0KbHTML102检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈