English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49195/83607 (59%)
造訪人次 : 7092622      線上人數 : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/6809


    題名: 鋪面績效預測模式之構建與應用(I)
    其他題名: Development and Applications of Pavement Performance Prediction Models (I)
    作者: 李英豪;葛湘瑋
    貢獻者: 淡江大學土木工程學系
    關鍵詞: 鋪面績效;預測模式;鋪面維修;鋪面管理;地理資訊系統;多層次資料;多層次線性模式;線性混合模式;Pavement Performance;Prediction Model;Pavement;Evaluation;Pavement management;Geographic Information System;Multilevel data;Hierarchical linear models;Linear Mixed-Effects Models
    日期: 2004
    上傳時間: 2009-03-16 14:46:34 (UTC+8)
    摘要: 鋪面績效預測模式在鋪面設計、鋪面評估與維修、與鋪面管理系統扮演著極為重要 的角色,然而在鋪面績效資料分析時,常常發現它違反了傳統迴歸法對於隨機誤差所做 的假設。鋪面績效資料屬於多層次資料的一種,分析此類的資料通常採用多層次線性模 式/線性混合模式(HLMs/ LMEs)。因為資料的結構具有層級性,多層次模式的資料探索 分析、統計模式的建立及模式評估比標準複迴歸複雜。因此,極需研擬如何利用上述方 法以改善系統化的統計與工程分析方法來構建鋪面績效預測模式。計畫主持人擬以三年 三期的方式,利用美國長程鋪面績效資料庫LTPP DataPave Online (http://www.datapave.com)從事「鋪面績效預測模式的構建與應用」研究,主要的研究內 容包括: 1. 鋪面標準損壞調查手冊之研擬。 2. 美國長期鋪面績效資料庫之本土化應用。 3. 研擬系統化的統計與工程分析方法:探討傳統迴歸方法(線性與非線性迴歸)、 當代迴歸技術、與線性混合模式之適用性與應用。 4. 建立剛性鋪面績效預測模式:分別建立維修前與維修後鋪面之橫向裂縫、縱向 裂縫、接縫破壞、 高差、PSR、與IRI 等預測模式。 5. 建立柔性鋪面績效預測模式:分別建立柔性維修前與維修後鋪面之裂縫、車 轍、PSR、與IRI 等預測模式。 6. 績效預測模式的本土化應用。 7. 預測模式的本土化應用與系統整合(ICSMART-R, NETDSD, TKUNET)。 8. 查詢網站與相關連結之建立。 此外,本研究將於計畫最後以實際案例分析,驗證研究成果的正確性與適用性,並 建立回饋機制,以期望此一鋪面管理系統能成為適合於國內使用的決策輔助工具。 Improved performance predictive models are greatly needed for use in various pavement applications including design, evaluation, rehabilitation, and network management. Nevertheless, the performance data often violated the assumptions of random errors and constant variance using conventional regression techniques. Pavement performance data is a very common example of multilevel data. Hierarchical linear models/linear mixed-effects (HLMs/ LMEs) models are often utilized to analyze multilevel data. Because of the hierarchy of data structure, the exploratory analysis, statistical modeling, and examination of model-fit of multilevel data are more complicated than those of standard multiple regressions. Thus, it is very crucial to investigate its possible applications to the existing systematic statistical and engineering approach for the development of pavement performance prediction models. The entire project consists of three phases (I, II, and III) to be completed within three years to conduct 「development and applications of pavement performance prediction models,」 using the well-known Long-Term Pavement Performance (LTPP) database (LTPP DataPave Online) (http://www.datapave.com). The major tasks include: 1. Prepare standard pavement distress identification manuals for domestic use. 2. Domestic applications of the LTPP database. 3. Revise the proposed the systematic statistical and engineering approach including conventional regression techniques (linear and nonlinear), modern regression techniques, and linear mixed-effects models. 4. Develop rigid pavement performance models including transverse cracking, longitudinal cracking, joint deterioration (spalling), faulting, PSR, and IRI for new and rehabilitated pavements separately. 5. Develop flexible pavement performance models including fatigue cracking, rutting, PSR, and IRI for new and rehabilitated pavements separately. 6. Domestic considerations and applications of the aforementioned predictive models. 7. Revise the existing prototype programs for pavement project-level rehabilitation and network-level management purposes including ICSMART-R, NETDSD, and TKUNET programs. 8. Establish a web-site for future communications and experience exchanges. The completion of this study will, hopefully, provide a sound basis for future development and integration of our domestic network pavement databases and network optimization analysis so as to assure the best use of our limited resources.
    顯示於類別:[土木工程學系暨研究所] 研究報告

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    932211E032016.pdf274KbAdobe PDF454檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋