English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7376264      線上人數 : 78
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/68079


    題名: 濁水溪流域暴雨時期流量預測之研究
    其他題名: A Study of Flood Forecasting on the Choshui River
    作者: 惠士奇;張斐章;張麗秋
    貢獻者: 淡江大學水資源及環境工程學系
    關鍵詞: 濁水溪;倒傳遞類神經網路;洪水預測;暴雨;流量;Cho-Shui River;Back-propagation neural network;Flood forecasting;Stormwater;Flow
    日期: 2003-01-01
    上傳時間: 2011-10-23 09:47:00 (UTC+8)
    出版者: 臺北市:中國農業工程學會
    摘要: 濁水溪不僅為台灣第一長河川,其暴漲猛落的水文特性亦為西部河川的典型,多年來上游集水區變遷與颱風、豪雨於該區造成多次災害。為減低颱風豪雨可能在濁水溪流域帶來之洪水災情,因此有必要建立洪水預警模式,對颱洪事件進行有效之預測,以降低洪水所帶來之生命財產損失。反傳遞模糊類神經網路為一包含輸入層、隱藏層及輸出層的模糊類神經網路,其主要以規則庫控制為基礎,結合模糊控制及反傳遞類神經網路。本研究將此一模式架構於濁水溪流域,對暴雨時期逕流量進行相關性之評估,並應用於未來逕流量之預測。經驗證,可得到相當良好之結果。
    The Choshui River inherited severe changes in stream flow regime with time is the longest river in Taiwan. Natural disasters such as floods, typhoon, and debris flows have been encountered and caused a great amount of damages and the changes of the hydrological characteristics of the basin. Owing to this reason, building a forecast model to reduce the flooded damage of the Choshui River is important and necessary. The structure of the counterpropagation fuzzy neural network is a kind of fuzzy neural network, which represented as an input layer, a hidden layer, and an output layer. This neural network is constructed by a set of rule-base control, fuzzy control, and counterpropagation network. This research presents a CFNN approach to the estimation of stream flow of the Choshui River in Taiwan. The results demonstrate that the ability of the approach is superior in terms of high prediction accuracy.
    關聯: 九十二年度農業工程研討會論文集,頁165-177
    顯示於類別:[水資源及環境工程學系暨研究所] 會議論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋