淡江大學機構典藏:Item 987654321/68061
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64180/96952 (66%)
造访人次 : 11311825      在线人数 : 8207
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/68061


    题名: 結合人工智慧與專家知識之智慧型水庫操作系統
    其它题名: Integrating AI with Expert Knowledge to Build Intelligent Reservoir
    作者: 張斐章;張雅婷;張麗秋
    贡献者: 淡江大學水資源及環境工程學系
    关键词: 水庫操作;人工智慧;遺傳演算法;調適性網路模糊推論系統;模糊規則庫;Reservoir operation;Artificial intelligence;Genetic algorithm;Adaptive network-based fuzzy inference system;Fuzzy rule base
    日期: 2005-10-13
    上传时间: 2011-10-23 09:43:47 (UTC+8)
    出版者: 臺北市:中國農業工程學會
    摘要: Resulting from the continuous increase in water demand and uneven water distribution both on time and space, the efforts of pursuing integrated optimal water resource management become critical. In this study, we propose a novel intelligent control methodology that includes the genetic algorithm (GA), fuzzy rule base (FRB), and the adaptive network-based fuzzy inference system (ANFIS) to enhance the efficiency of reservoir operation. The Shihmen reservoir in north Taiwan is used as a case study, and its last thirty-six years hydrological data are used to train and/or verify the models' performance. GA and FRB are used to extract the knowledge based on the historical inflow data with a design objective function and the
    traditional rule curve operating strategy, respectively. The ANFIS is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. The practicability and effectiveness of the proposed approach is tested on the operation of the Shihmen reservoir. The results show that the ANFIS models built on different types of knowledge have better performance than the traditional M-5 rule curves in reservoir operation. Moreover, we demonstrate that the ANFIS model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
    關聯: 九十四年度農業工程研討會論文集,14頁
    显示于类别:[水資源及環境工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈