English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49645/84944 (58%)
Visitors : 7700359      Online Users : 34
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/67996


    Title: Modeling pesticide volatilization from turf
    Authors: 李柏青
    Contributors: 淡江大學水資源及環境工程學系
    Date: 1999-08
    Issue Date: 2011-10-23 09:31:52 (UTC+8)
    Publisher: Agricultural University of Athens
    Abstract: Pesticide volatilization models are typically based on equilibrium partitioning of the chemical into solid, liquid, and gaseous phases in the soil environment. In turf systems direct vaporization from vegetation surfaces is a more likely source, and it is difficult to apply equilibrium methods to plant material due to the uncertainties of solid-liquid-gas partitioning. An alternative approach is to assume that pesticide volatilization is governed by the same processes that affect water evaporation. A model was developed in which evapotranspiration values, as determined by the Penman equation, were adjusted to chemical vaporization using ratios of water and chemical saturated vapor pressures and latent heats of vaporization. The model also assumes first-order degradation of pesticide on turf vegetation over time. The model was tested by comparisons of predictions with measurements of volatilization for eight pesticides measured during 3 to 7 d in 11 field experiments. Measured volatilization fluxes ranged from 0.1 to 22% of applied chemical. Pesticides were divided into two groups based on saturated vapor pressures and organic C partition coefficients. One pesticide was selected from each group to calibrate the model's volatilization constant for the group, and the remaining pesticides were used for model testing. Testing results indicated that the model provides relatively conservative estimates of pesticide volatilization. Predicted mean losses exceeded observations by 20%, and the model explained 67% of the observed variation in volatilization fluxes. The model was most accurate for those chemicals that exhibited the largest volatilization losses.
    Relation: Nektarios (ed.).1st International Conference on Turfgrass Management and Science for Sport Fields,
    DOI: 10.2134/jeq2002.7240
    Appears in Collections:[水資源及環境工程學系暨研究所] 會議論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback