淡江大學機構典藏:Item 987654321/67978
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56733/90513 (63%)
造访人次 : 12080784      在线人数 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/67978


    题名: Estimation of Flood Inundation Extent Using Hybrid Models
    作者: 張麗秋
    贡献者: 淡江大學水資源及環境工程學系
    日期: 2009-12
    上传时间: 2011-10-23 09:28:35 (UTC+8)
    出版者: AGU
    摘要: We present a two-stage procedure underlying CHIM (clustering-based hybrid inundation model), which is composed of the linear regression models and ANNs to build the regional flood inundation estimation model. The two-stage procedure includes data preprocessing and model building stages. In the data preprocessing stage, the K-means clustering is used to categorize the data points of the different flooding characteristics and to identify the control point(s) from individual flooding cluster(s). In the model building stage, three classes of flood depth estimation models are built in each cluster: the back-propagation neural network (BPNN) for each control point, the linear regression models for the grids those have highly linear correlation with the control point, and a multi-grid BPNN for the grids those do not exist highly linear correlation with the control point. The effectiveness of the proposed approach is tested in the Dacun township in Taiwan. The results show that the CHIM can continuously and adequately provide one-hour-ahead flood inundation maps and effectively reduce 99% CPU time.
    關聯: 2009 AGU Fall Meeting,
    显示于类别:[水資源及環境工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈