English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56552/90363 (63%)
造訪人次 : 11832971      線上人數 : 138
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/67978

    題名: Estimation of Flood Inundation Extent Using Hybrid Models
    作者: 張麗秋
    貢獻者: 淡江大學水資源及環境工程學系
    日期: 2009-12
    上傳時間: 2011-10-23 09:28:35 (UTC+8)
    出版者: AGU
    摘要: We present a two-stage procedure underlying CHIM (clustering-based hybrid inundation model), which is composed of the linear regression models and ANNs to build the regional flood inundation estimation model. The two-stage procedure includes data preprocessing and model building stages. In the data preprocessing stage, the K-means clustering is used to categorize the data points of the different flooding characteristics and to identify the control point(s) from individual flooding cluster(s). In the model building stage, three classes of flood depth estimation models are built in each cluster: the back-propagation neural network (BPNN) for each control point, the linear regression models for the grids those have highly linear correlation with the control point, and a multi-grid BPNN for the grids those do not exist highly linear correlation with the control point. The effectiveness of the proposed approach is tested in the Dacun township in Taiwan. The results show that the CHIM can continuously and adequately provide one-hour-ahead flood inundation maps and effectively reduce 99% CPU time.
    關聯: 2009 AGU Fall Meeting,
    顯示於類別:[水資源及環境工程學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋