English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55025/89277 (62%)
造訪人次 : 10605383      線上人數 : 24
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/65478


    題名: Improving Data Association in Robot SLAM with Monocular Vision
    作者: Wang, Yin-Tien;Hung, Duan-Yan;Sun, Chung-Hsun
    貢獻者: 淡江大學機械與機電工程學系
    關鍵詞: data association;likelihood function;nearest-neighbor (NN) method;speeded up robust features (SURF);simultaneous localization and mapping (SLAM);monocular vision
    日期: 2011-11-01
    上傳時間: 2011-10-21 13:59:00 (UTC+8)
    出版者: 臺北市:中央研究院資訊科學研究所
    摘要: In the paper, an algorithm is proposed for improving the data association in robot visual Simultaneous Localization and Mapping (SLAM). The detection of speeded-up robust feature (SURF) is employed in the algorithm to provide a robust description for image features as well as a better representation of landmarks in the map of a visual SLAM system. Meanwhile, a likelihood-based tracking window and a nearest-neighbor (NN) method are utilized to match the high-dimensional data sets created for SURF. Experiments are carried out on a hand-held camera to verify the performances of the proposed algorithm for dealing with the data association problem in robot visual SLAM. The results show that the integration of the SURF features, the tracking window and the NN method is efficient in reducing the computational time and increasing the rate of successful feature matching.
    關聯: Journal of Information Science and Engineering 27(6), pp.1823-1837
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    10.1.1.461.6798.pdf1395KbAdobe PDF0檢視/開啟
    index.html0KbHTML107檢視/開啟
    Wang2011JISE11_02.pdf1395KbAdobe PDF6檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋