English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 53836/88492 (61%)
造访人次 : 10530156      在线人数 : 14
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/65478


    题名: Improving Data Association in Robot SLAM with Monocular Vision
    作者: Wang, Yin-Tien;Hung, Duan-Yan;Sun, Chung-Hsun
    贡献者: 淡江大學機械與機電工程學系
    关键词: data association;likelihood function;nearest-neighbor (NN) method;speeded up robust features (SURF);simultaneous localization and mapping (SLAM);monocular vision
    日期: 2011-11-01
    上传时间: 2011-10-21 13:59:00 (UTC+8)
    出版者: 臺北市:中央研究院資訊科學研究所
    摘要: In the paper, an algorithm is proposed for improving the data association in robot visual Simultaneous Localization and Mapping (SLAM). The detection of speeded-up robust feature (SURF) is employed in the algorithm to provide a robust description for image features as well as a better representation of landmarks in the map of a visual SLAM system. Meanwhile, a likelihood-based tracking window and a nearest-neighbor (NN) method are utilized to match the high-dimensional data sets created for SURF. Experiments are carried out on a hand-held camera to verify the performances of the proposed algorithm for dealing with the data association problem in robot visual SLAM. The results show that the integration of the SURF features, the tracking window and the NN method is efficient in reducing the computational time and increasing the rate of successful feature matching.
    關聯: Journal of Information Science and Engineering 27(6), pp.1823-1837
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    10.1.1.461.6798.pdf1395KbAdobe PDF0检视/开启
    index.html0KbHTML106检视/开启
    Wang2011JISE11_02.pdf1395KbAdobe PDF6检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈