English  |  正體中文  |  简体中文  |  Items with full text/Total items : 60868/93650 (65%)
Visitors : 1149643      Online Users : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/65473


    Title: Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures
    Authors: Hwang, Kuo-Jen;Sz, Pan-Yu
    Contributors: 淡江大學化學工程與材料工程學系
    Keywords: Microfiltration;Membrane fouling;Cross-flow filtration;Membrane filtration;Bio-separation
    Date: 2011-08
    Issue Date: 2011-10-21 11:27:51 (UTC+8)
    Publisher: Amsterdam: Elsevier BV
    Abstract: The membrane pore size and operating condition effects on the filtration flux, membrane fouling and solute rejections in cross-flow microfiltration of BSA/dextran binary suspension are studied. Two flat sheet microfiltration membranes with mean pore sizes of 0.1 and 0.025 μm are used as filter media in these experiments. The filtration flux increases with increasing cross-flow velocity and filtration pressure because of less membrane fouling or higher filtration driving force. The filtration resistance caused by membrane fouling is much higher than that caused by concentration polarization or virgin membrane. This impact is more significant under higher transmembrane pressures. The membrane fouling extent due to dextran adsorption is expressed as pore size reduction and fouled layer depth, which can be estimated theoretically based on hydrodynamic models. The dextran rejection decreases with increasing Reynolds number in the membrane pores and approaches constant when the Reynolds number exceeds a critical value. This is attributed to the increase in wall shear stress and molecular deformation in the membrane pores. A higher cross-flow velocity results in higher dextran rejection because of the sweeping effect occurring on the membrane surface. The BSA rejection under various operating conditions can be reasonably explained by the membrane sieving effect. The BSA rejection decreases linearly with increasing pore size in the fouled membrane with no obvious cross-flow velocity effect on BSA rejection found. The effects of the dextran concentration and Reynolds number in the membrane pores on the dextran adsorption layer thickness are also discussed.
    Relation: Journal of Membrane Science 378(1-2), pp.272–279
    DOI: 10.1016/j.memsci.2011.05.018
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    0376-7388_378(1-2)p272–279.pdf1283KbAdobe PDF332View/Open
    0376-7388_378(1-2)p272–279.pdf1283KbAdobe PDF0View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback