English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91876 (63%)
造訪人次 : 14075608      線上人數 : 102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/65473

    題名: Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures
    作者: Hwang, Kuo-Jen;Sz, Pan-Yu
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Microfiltration;Membrane fouling;Cross-flow filtration;Membrane filtration;Bio-separation
    日期: 2011-08
    上傳時間: 2011-10-21 11:27:51 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: The membrane pore size and operating condition effects on the filtration flux, membrane fouling and solute rejections in cross-flow microfiltration of BSA/dextran binary suspension are studied. Two flat sheet microfiltration membranes with mean pore sizes of 0.1 and 0.025 μm are used as filter media in these experiments. The filtration flux increases with increasing cross-flow velocity and filtration pressure because of less membrane fouling or higher filtration driving force. The filtration resistance caused by membrane fouling is much higher than that caused by concentration polarization or virgin membrane. This impact is more significant under higher transmembrane pressures. The membrane fouling extent due to dextran adsorption is expressed as pore size reduction and fouled layer depth, which can be estimated theoretically based on hydrodynamic models. The dextran rejection decreases with increasing Reynolds number in the membrane pores and approaches constant when the Reynolds number exceeds a critical value. This is attributed to the increase in wall shear stress and molecular deformation in the membrane pores. A higher cross-flow velocity results in higher dextran rejection because of the sweeping effect occurring on the membrane surface. The BSA rejection under various operating conditions can be reasonably explained by the membrane sieving effect. The BSA rejection decreases linearly with increasing pore size in the fouled membrane with no obvious cross-flow velocity effect on BSA rejection found. The effects of the dextran concentration and Reynolds number in the membrane pores on the dextran adsorption layer thickness are also discussed.
    關聯: Journal of Membrane Science 378(1-2), pp.272–279
    DOI: 10.1016/j.memsci.2011.05.018
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0376-7388_378(1-2)p272–279.pdf1283KbAdobe PDF313檢視/開啟
    0376-7388_378(1-2)p272–279.pdf1283KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋