English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 59676/92934 (64%)
造訪人次 : 825468      線上人數 : 19
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/65330

    題名: Laser Propulsion System Performance Requirements for Single Stage to GEO Launch
    作者: Hong, Z. C.;Chern, C. Y.;Chern, J. S.
    貢獻者: 淡江大學機械與機電工程學系
    日期: 1995-01
    上傳時間: 2011-10-20 21:40:54 (UTC+8)
    摘要: This paper gives a discussion about the laser propulsion system performance requirements for optimal vertical ascent to the geosynchronous earth orbit (GEO) with both dynamic pressure and thrust acceleration constraints imposed. The performance index is to minimize the final mass. In other words, the propellant consumption is to be minimized. The acceleration due to the thrust is limited to 2.5 times of the gravitational acceleration at the Earth's surface. The dynamic pressure is limited to the maximum allowable level for space shuttle ascending flight. It is found that for the final mass to be 10% or more of the initial mass, the specific impulse must be 1500 s or larger. The total efficiency of the laser propulsion system is the product of three efficiencies: the transmission efficiency which expresses the atmospheric absorption of the laser energy, the diffraction efficiency which expresses the laser beam spreading in the atmosphere, and the thruster efficiency. Under the consideration of the total efficiency, the power requirement of the laser system as a function of the flight time is solved. The initial mass of the launch vehicle is selected to be 10,000 kg. Its 10% is 1 ton and is the mass of a proper payload. The peak laser power required is found to be 4.5 GW.
    關聯: International Journal of Space Technology15(6), pp.395-401
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋