English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9306563      線上人數 : 743
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/65308


    題名: Finite Element Frequency-domain Acoustic Analysis of Open-Cell Plastic Foams
    作者: Tsay, H.-S.;Yeh, F.-H.
    貢獻者: 淡江大學機械與機電工程學系
    關鍵詞: Corrugated open-cell plastic foam;Biot;Laplace transform;Finite element method;Dynamic stiffness;Acoustic response
    日期: 2006-01-01
    上傳時間: 2011-10-20 21:38:57 (UTC+8)
    摘要: A numerical method using an impulsive excitation to excite and collect the acoustic frequency response functions of corrugated open-cell plastic foams is presented in this study. In the study, the Biot's poroelasticity equations are first phrased in terms of solid and fluid displacements and then transformed into the Laplace domain. With the use of the general quadrilateral or triangular elements, the stiffness matrixes for the foams in the Laplace domain are then derived by the Galerkin-type finite element method. After solving and obtaining the dynamic stiffness transfer functions for the foams that are excited by an impulsive pressure on their upper surface, the Laplace transformed stiffness transfer functions are then transformed into frequency domain called dynamic stiffness functions, which can be further used in calculating the acoustic properties of foams. For validations, the proposed Laplace transformed finite element method (LTFEM) is first used to predict the acoustic properties of a planar and rigidly backed open-cell plastic foam with infinite width and permeable upper surface. Thereafter, the influences of the thickness, the width-to-thickness ratio, and the roller as well as fixed side edge restraints on the planar foams’ acoustic properties are examined. Furthermore, the use of LTFEM to predict the acoustic properties of corrugated foams are demonstrated and discussed. Without the use of the additional acoustic field that is required in the earlier studies, results predicted in the present study are in good agreement with either the exact solutions or the experimental data.
    關聯: Finite Elements in Analysis and Design42(4), pp.314-339
    DOI: 10.1016/j.finel.2005.08.003
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML47檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋