English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3918993      在线人数 : 602
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/65292


    题名: Design of Protective Coatings for Glass Lens Molding
    作者: Ma, Kung Jeng;Chien, H.H.;Chuan, W.H.;Chao, Choung Lii;Hwang, K.C.
    贡献者: 淡江大學機械與機電工程學系
    关键词: Coating;Glass Molding;Interface Reaction;Wetting
    日期: 2007-12
    上传时间: 2011-10-20 21:37:41 (UTC+8)
    出版者: Stafa-Zurich: Trans Tech Publications Ltd.
    摘要: The glass molding process is considered to have a great potential for the mass production of aspherical glass lenses with high precision and low cost. However, glass molding has a serious problem of mold sticking with glass which needs to be resolved. This research investigates the interface reaction between glass and mold by high temperature wetting experiment, which provides the reference for the designing anti-stick coatings. The SUMITA K-PSK200 optical glass gobs with low Tg were used in this study. The influence of operation temperature, ambient gas, substrate materials, and thin film composition on wettability of glass at high temperature were studied. The results show that the higher the temperature, the smaller the wetting angle between glass gob and substrate could be observed. This indicates that severe interface chemical reaction occured and resulted in the loss of transparency in glass appearance. The wetting experiment in nitrogen ambient improved the sticking situation. The combination of chemically stable substrates and coatings, such as Sapphire (substrate) / GaN (film) and Glass (substrate) / Al2O3 (film) can achieve the best antistick propose. The precious metal films, such as Pt, Ir, coated on the ceramic substrates can effectively reduce the interface reaction between the glass and substrates.
    關聯: Key Engineering Materials 364-366, pp.655-661
    DOI: 10.4028/www.scientific.net/KEM.364-366.655
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML18检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈