English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7377188      線上人數 : 79
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/65054


    題名: Bayesian semiparametric regression analysis of multicategorical time-space data
    作者: Huang, Wen-tao;黃文濤(等)
    貢獻者: 淡江大學經營決策學系
    關鍵詞: Categorical time-space data;forest damage;latent utility models;Markov random fields;MCMC;probit models;semiparametric Bayesian inference;unemployment
    日期: 2001-03
    上傳時間: 2011-10-20 16:31:10 (UTC+8)
    摘要: We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. The approach in this paper is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey.
    關聯: The annals of the institute of statistical mathemetics 53(1), pp.11-30
    DOI: 10.1023/A:1017904118167
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋