English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57075/90742 (63%)
造訪人次 : 12504930      線上人數 : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/64906

    題名: Classification of Autoregressive Spectral Estimated Signal Patterns Using an Adaptive Resonance Theory Neural Network
    作者: Lin, Chang-ching;Wang, Hsu-pin
    貢獻者: 淡江大學經營決策學系
    關鍵詞: Neural networks;Autoregressive;Pattern classification;Machine condition monitoring;Vibration
    日期: 1993-08-01
    上傳時間: 2011-10-20 16:09:13 (UTC+8)
    摘要: Machine condition monitoring and fault detection has been an important issue for manufacturing practitioners and researchers around the world, as it impacts production efficiency and effectiveness as well as the morale of the production crew profoundly. This paper examines the use of a relatively new technology, Adaptive Resonance Theory (ART), to assess the machine condition through vibration signals. The vibration signal is first compressed with an Autoregressive (AR) technique in order to reduce the amount of information which the ART neural network is to deal with. The theoretical foundation of the fault classification system is discussed, followed by a brief case study.
    關聯: Computers in Industry22(2), pp.143-157
    DOI: 10.1016/0166-3615(93)90061-5
    顯示於類別:[管理科學學系暨研究所] 期刊論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋