English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8162954      線上人數 : 62
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/64709


    題名: 整合類神經網路與無母數統計鑑別模式之二階段信用評等模式
    其他題名: A Hybrid Credit Scoring Technique Using Artificial Neural Networks, Classification and Regression Tree and Multivariate Adaptive Regression Splines
    作者: 賴靜惠;陳怡妃;李天行
    貢獻者: 淡江大學經營決策學系
    關鍵詞: 信用評等;分類問題;類神經網路;分類迴歸樹;多元適應性雲形迴歸;Credit scoring;Classification;Neural networks;Classification and regression tree;Multivariate adaptive regression splines
    日期: 2003-12
    上傳時間: 2013-04-11 14:31:11 (UTC+8)
    出版者: 臺北市:德明商業專科學校
    摘要: 由於科技不斷進步、網際網路的快速發展加上各種儲存設備的製造成本大幅的降低,企業可以輕易地以較低的成本獲得顧客各種資料,大幅節省了資料調查、蒐集所需的人力、物力及財力。也因此在快速地累積了龐大的資料後,常無法有效地加以分析。而這些資料往往隱藏許多重要的資訊,若能有效地運用這些資訊,進行正確的處理,並經由適當的分析方法取得相關的重要資訊,在經營或行銷策略的制定上,定有相當的輔助效果。 本研究嘗試提出一整合類神經網路與分類迴歸樹(classification and regression tree, CART)及多元適應性雲形迴歸(multivariate adaptive regression splines, MARS)於信用評等模式問題之建構程序,而為了評估此二階段分類模式的判別能力,以某信用卡發卡銀行提供之信用卡持有者之信用資料建構分類模式,並將分析之結果與單純使用倒傳遞類神經網路之分析結果進行比較。研究結果顯示,二階段分類模式的判別結果明顯有優於倒傳遞類神經網路模式之結果。此外,在考慮銀行較關心的損失成本上,二階段分類模式亦有較低的型二錯誤率。
    The artificial neural network is becoming a popular alternative in handling credit scoring tasks due to its associated memory characteristic and generalization capability. However, the decision of network's topology, importance of potential input variables and the long training process has often long been criticized and hence limited its application. The classification and regression tree (CART) and multivariate adaptive regression splines (MARS) are becoming very popular alternatives in prediction and classification task due to their capability in modeling nonlinear relationship among variables. Aiming at improving the above-mentioned drawbacks of neural network, the objective of the proposed study is to explore the performance of data classification by integrating neural network, CART, and MARS. To demonstrate the effectiveness of the proposed approach, classification tasks are performed on one credit card dataset. As the results reveal, the proposed integrated approach outperforms the traditional neural network approach in terms of classification accurancy and misclassification cost.
    關聯: 德明學報=Journal of Takming College 22,頁71-87
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    2078-4899_22p71-87.pdf9270KbAdobe PDF99檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋