淡江大學機構典藏:Item 987654321/64133
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58617/92280 (64%)
造访人次 : 563021      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/64133


    题名: Financial Distress Prediction by a Radial Basis Function Network with Logit Analysis Learning
    作者: 陳慶隆;Cheng, Chi-bin;Fu, Clay C. -J.
    贡献者: 淡江大學會計學系
    关键词: Financial distress prediction;Radial basis function network;Neural networks;Logit analysis
    日期: 2006-02-01
    上传时间: 2011-10-20 12:45:00 (UTC+8)
    摘要: This paper presents a financial distress prediction model that combines the approaches of neural network learning and logit analysis. This combination can retain the advantages and avoid the disadvantages of the two kinds of approaches in solving such a problem. The radial basis function network (RBFN) is adopted to construct the prediction model. The architecture of RBFN allows the grouping of similar firms in the hidden layer of the network and then performs a logit analysis on these groups instead of directly on the firms. Such a manner can remedy the problem of nominal variables in the input space. The performance of the proposed RBFN is compared to the traditional logit analysis and a backpropagation neural network and demonstrates superior results to both the counterparts in predictive accuracy for unseen data.
    關聯: Computers and Mathematics with Applications 51, pp.579-588
    DOI: 10.1016/j.camwa.2005.07.016
    显示于类别:[會計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Financial Distress Prediction by a Radial Basis Function Network with Logit Analysis Learning.pdf777KbAdobe PDF0检视/开启
    index.html0KbHTML90检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈