English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58286/91808 (63%)
Visitors : 13812857      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/62530

    Title: The Variations of the Elements of the Orbit of Multiple-Pass Aeroassisted Plane Change
    Other Titles: 多次進出之大氣輔助軌道平面轉變的軌道參數 特性
    Authors: 馬德明;Ma, Der-ming
    Contributors: 淡江大學航空太空工程學系
    Keywords: 軌道力學;軌道轉換;最佳軌跡;氣輔助轉換;狀態方程式;Orbit Mechanics;Orbital Transfer;Optimal Trajectory;Aeroassisted Transfer;State Equation
    Date: 1992-11
    Issue Date: 2011-10-18 21:46:02 (UTC+8)
    Publisher: 成功大學
    Abstract: 多次進出大氣層所產生最大軌道平面轉變 之最佳軌跡及次佳軌跡具備了軌道之特性。因 此,引發了吾人探討此解之軌道參數變化特性 。 首先,利用適當之關係將最佳軌跡之軌跡 參數(.phi.,.psi.,.theta.,h,u,.gamma.)轉換為軌道參數(.alpha.,.OMEGA.,I,a,e,.omega.)。接著,引用Lagrange's軌 道方程式直接推導軌道參數變化之方程式。並 且利用上述之方程式及次佳控制法則來計算軌 跡。當然,在引用次佳控制法則及橫斷條件時 已經將它們以軌道參數來表示了。 依據上述之結果,吾人發覺.omega.及.OMEGA.之 變化很小,因而使得.alpha..apprxeq.f。所以,忽略 .omega.,.OMEGA.及.alpha.三個式子,僅考慮I,a,及e,三 式即可,而使得計算大氣輔助軌道平面轉變更 為簡單。
    The properties of the optimal and sub-optimal solutions to multiple-pass aeroassisted plane change are studied in terms of the trajectory variables in Refs. (6) and (8). The solutions show the strong orbital nature. Therefore, it is interested to have the solutions in terms of the elements of the orbit. We shall use the relations between the trajectory variables .phi., .psi. and .theta. and the orbital elements .alpha., .OMEGA. and I as given by the spherical trigonometry and the relations between the trajectory variables h, u and .gamma. and the orbital elements a, e and .omega. as given by the orbital theory to derive the differential equations for the variations of the orbital elements (.alpha., .OMEGA., I, a, e, .omega.) along the optimal trajectories. Then, it is proposed to obtain the variations of the orbital elements by direct integration of their equations and by using the classical Lagrange's planetary equations. Finally, we shall use these equations and the approximate control derived in Ref. (8) to calculate the trajectories. In this respect, the approximate control law and the transversality condition are transformed in terms of the orbital elements. Following the above results, we can reduce the computational task by further simplification. With .omega. and .OMEGA. being small and returning to the value of zero after each revolution, we neglect the equations for .omega., and .OMEGA., Also, since .omega..apprxeq.0, that is .alpha..apprxeq.f, we can neglect the equation for the .alpha. and have only three state equations for the integration.
    Relation: 中國航空太空學會第三十四屆學術研討會論文集(二)=Proceedings of the AASRC 34th Aeronautics and Astronautics Conference (I I), pp.554-563
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Proceeding

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback