English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55221/89519 (62%)
造訪人次 : 10721291      線上人數 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/62400

    題名: Fundamental limits on spacecraft orbit uncertainty and distribution propagation
    作者: Hsiao, Fu-yuen;Scheeres, D.J.;Park;Villac;Maruskin
    貢獻者: 淡江大學航空太空工程學系
    日期: 2006-07
    上傳時間: 2011-10-18 20:45:56 (UTC+8)
    出版者: Springer
    摘要: In this paper we present and review a number of fundamental constraints that exist on the propagation of orbit uncertainty and phase volume flows in astrodynamics. These constraints arise due to the Hamiltonian nature of spacecraft dynamics. First we review the role of integral invariants and their connection to orbit uncertainty, and show how they can be used to formally solve the diffusion-less Fokker-Plank equation for a spacecraft probability density function. Then, we apply Gromov’s Non-Squeezing Theorem, a recent advance in symplectic topology, to find a previously unrecognized fundamental constraint that exists on general, nonlinear mappings of orbit distributions. Specifically, for a given orbit distribution, it can be shown that the projection of future orbit uncertainties in each coordinate-momentum pair describing the system must be greater than or equal to a fundamental limit, called the symplectic width. This implies that there is always a fundamental limit to which we can know a spacecraft’s future location in its coordinate and conjugate momentum space when mapped forward in time from an initial covariance distribution. This serves as an “uncertainty” principle for spacecraft uncertainty distributions.
    關聯: Journal of the Astronautical Sciences 54(3), pp.505-523
    DOI: 10.1007/BF03256503
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋