淡江大學機構典藏:Item 987654321/61778
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3945301      Online Users : 586
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/61778


    Title: Theoretical Investigation of Organic Amines as Hole Transporting Materials: Correlation to the Hammett Parameter of the Substituent, Ionization Potential, and Reorganization Energy Level
    Authors: Pan, Jiunn-hung;Chou, Yu-ma;Chiu, Houn-lin;Wang, Bo-cheng
    Contributors: 淡江大學化學學系
    Date: 2009-05
    Issue Date: 2011-10-15 23:39:32 (UTC+8)
    Publisher: Collingwood: C S I R O Publishing
    Abstract: Theoretical calculations on organic amines widely used as hole-transporting materials (HTMs) in multilayer organic light-emitting diodes have been performed. The calculated Ip and the reorganization energy for hole transport (λ+) of triphenylamine (TPA), 9-phenyl-9H-carbazole (PC), and their derivatives, are found to be related to their Hammett parameter (σ). In this study, the density functional theory (DFT) calculation is used to optimize 82 TPA and PC derivatives. Electronic structures of these compounds in the neutral and the radical-cation states are obtained based on calculations on optimized geometrical structures. The Ip and λ+ values are derived from calculated heats of formation (or total energy) of the neutral and the radical-cation states. In particular, the calculated Ips for these derivatives correlate well with the experimental data. The substitution effect for the mono-substituted TPA and PC is displayed in that the Ips of the TPA and PC derivatives with electron-donating and -withdrawing substituents are lower and higher than those of TPA and PC, respectively. For the effect of substitution position, the para-substituted TPA derivatives have higher Ip and –EHOMO than those of meta-substituted TPAs. The substitution effects in di- and tri-substituted TPAs are more pronounced than that of mono-substituted ones. According to the results, the calculated Ips shows an excellent agreement with the experimental oxidation potentials (EP/2) in these TPA derivatives. Furthermore, these calculation results can be employed to predict electro-luminescent properties for new and improved HTMs.
    Relation: Australian Journal of Chemistry 62(5), pp.483-492
    DOI: 10.1071/CH08348
    Appears in Collections:[Graduate Institute & Department of Chemistry] Journal Article

    Files in This Item:

    File SizeFormat
    index.html0KbHTML41View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback