In this paper, a new ultra wideband circular antenna array (UCAA) combining genetic algorithm (GA) to minimize the bit error rate (BER) is proposed. The ultra wideband (UWB) impulse responses of the indoor channel for any transmitter-receiver location are computed by SBR/Image techniques, inverse fast Fourier transform and Hermitian processing. By using the impulse response of multipath channel, the BER performance of the binary pulse amplitude modulation (B-PAM) impulse radio (IR) UWB system with circular antenna array can be calculated. Based on the topography of the antenna and the BER formula, the array pattern synthesis problem can be reformulated into an optimization problem and solved by the genetic algorithm. The novelties of our approach is not only choosing BER as the object function instead of sidelobe level of the antenna pattern, but also considering the antenna feed length effect of each array element. The strong point of the genetic algorithm is that it can find out the solution even if the performance index cannot be formulated by simple equations. Simulation results show that the synthesized antenna array pattern is effective to focus maximum gain to the multiusers.
Relation:
Progress In Electromagnetics Research C 16, pp.85-98