English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7369444      線上人數 : 52
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/61014


    題名: A hybrid fuzzy decentralized sliding mode under-actuated control for autonomous dynamic balance of a running electrical bicycle including frictional torque and motor dynamics and in the presence of huge uncertainty
    作者: 黃志良
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Uncertainty;Bicycles;Acceleration;Control systems;Mathematical model;Equations;Torque
    日期: 2010-07
    上傳時間: 2011-10-15 01:14:49 (UTC+8)
    摘要: Hybrid under-actuated control for the autonomous dynamic balance of a running electrical bicycle including frictional torque and motor dynamics is developed, where includes two control inputs: steering and pendulum voltages, and three system outputs: steering, lean and pendulum angles. Due to the under-actuated feature, two novel reference signals using three system outputs are designed so that the number of control inputs and sliding surfaces is the same. The previous fuzzy decentralized sliding mode under-actuated control (FDSMUC) is first designed. Because the uncertainties of a running electrical bicycle system, caused by different ground conditions, gusts of wind, and interactions among subsystems, are often huge, an extra compensation of learning uncertainty is plunged into FDSMUC to enhance the system performance. We call it as “fuzzy decentralized sliding mode adaptive under-actuated control (FDSMAUC).” To avoid the unnecessary transience caused by uncertainties and control signal and to preserve the balance of the bicycle, the combination of FDSMUC and FDSMAUC with a transition (i.e., Hybrid FDSMUC) is designed. Finally, the compared simulations for the suggested control system among the FDSMUC, FDSMAUC and Hybrid FDSMUC validate the efficiency of the proposed method.
    關聯: IEEE WCCI2010, pp.1-8
    DOI: 10.1109/FUZZY.2010.5584526
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋