淡江大學機構典藏:Item 987654321/60745
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8545531      在线人数 : 8561
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/60745


    题名: Neural-network-based variable structure control of electrohydraulic servosystems subject to huge uncertainties without the persistent excitation
    作者: 黃志良
    贡献者: 淡江大學電機工程學系
    日期: 1999-01-01
    上传时间: 2011-10-15 00:48:41 (UTC+8)
    摘要: A novel scheme investigating a radial-basis-function neural network (RBFNN) with variable structure control (VSC) for electrohydraulic servosystems subject to huge uncertainties is presented. Although the VSC possesses some advantages (e.g., fast response, less sensitive to uncertainties, and easy implementation), the chattering control input often occurs. The reason for a chattering control input is that the switching control in the VSC is used to cope with the uncertainties. The larger the uncertainties which arise, the larger switching control occurs. In this paper, an RBFNN is employed to model the uncertainties caused by parameter variations, friction, external load, and controller. A new weight updating law using a revision of e-modification by a time varying dead zone can achieve an exponential stability without the assumption of persistent excitation for the uncertainties or radial basis function. Then, an RBFNN-based VSC is constructed such that some part of uncertainties are tackled, that the tracking performance is improved, and that the level of chattering control input is attenuated. Finally, the stability of the overall system is verified by the Lyapunov stability criterion.
    關聯: IEEE/ASME Transactions on Mechatronics 4(1), pp.50-59
    DOI: 10.1109/3516.752084
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML27检视/开启
    Neural-network-based variable structure control of electrohydraulic servosystems subject to huge uncertainties without the persistent excitation.pdf469KbAdobe PDF82检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈