English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60984/93521 (65%)
造访人次 : 1563873      在线人数 : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/60744

    题名: A New Adaptive Constrained LMS Time Delay Estimation Algorithm
    作者: 陳巽璋;Lin, S.N.
    贡献者: 淡江大學電機工程學系
    关键词: Time delay estimation;Constrained LMS TDE algorithm
    日期: 1998-11-01
    上传时间: 2011-10-15 00:48:37 (UTC+8)
    摘要: In this paper, a new adaptive constrained LMS time delay estimation (TDE) algorithm is devised. It is known that in the TDE problem, the time differences between relevant sensors can be modeled as a finite impulse response (FIR) filter whose weight coefficients are samples of a sinc function. Moreover, in case of non-integer TDE, the performance of estimation result is highly dependent upon the convergence rate of weight coefficients of the FIR filter. To speed up the convergence rate of the weight coefficients, in this paper, we propose a new constrained LMS TDE algorithm by making use of the constraint that the sum of the squares of the weight coefficients of the FIR filter equals unity. Here, we show that the constrained optimum solution is identical to the true weights solution which is the error free optimum solution. Also, to document the advantage of the proposed algorithm, the statistical analysis of the steady-state weight-error vector as well as the mean square error of the estimator, using the proposed algorithm, are derived. As confirmed by the theoretical and simulation results, the new proposed algorithm for non-integer TDE outperform the conventional LMS TDE algorithm.
    關聯: Signal Processing 71(1), pp.29-44
    DOI: 10.1016/S0165-1684(98)00132-7
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    A New Adaptive Constrained LMS Time Delay Estimation Algorithm.pdf280KbAdobe PDF1检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈