English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55176/89445 (62%)
造访人次 : 10658384      在线人数 : 25
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/60387


    题名: Modeling extraction separation of Cu(II) in hollow-fiber modules
    作者: Guo, Jia-Jan;Ho, Chii-Dong;Tu, Jr-Wei
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: Extraction;Mass transfer;Mathematical modeling;Membrane;Separations;Simulation
    日期: 2009-08-01
    上传时间: 2011-10-13 22:35:28 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: The mass transfer problems in the hollow-fiber membrane extractor module with concurrent- and countercurrent-flow were investigated theoretically and experimentally in this study. A two-dimensional mathematical model of the hollow-fiber membrane extractor module was developed theoretically and the shell side flow described by Happel's free surface model was taken into account. The analytical solution is obtained using an eigenfunction expansion in terms of the power series and an orthogonal expansion technique. The theoretical predictions were represented graphically with the mass-transfer Graetz number (Gz), flow pattern and packing density (φ) as parameters and the theoretical results were also compared with those obtained by experimental runs. The highest extraction rate, extraction efficiency and mass transfer efficiency can be achieved by arranging the packing density φ=0.3. The results show that the device performance of the countercurrent-flow device is better than that of the concurrent-flow device. The experiments of the extraction of Cu2+ by using D2EHPA with PVDF hollow fibers is also set up to confirm the accuracy of the theoretical predictions. The accuracy of the theoretical predictions for concurrent- and countercurrent-flow are 5.87×10-2≤E1≤6.69×10-2 and 2.46×10-2≤E1≤3.48×10-2, respectively, for Gza=40.8.
    關聯: Chemical Engineering Science 64(15), pp.3455-3465
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML110检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈