English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9557569      線上人數 : 18006
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/60377


    題名: Hydrodynamic Behavior of Flow in a Drinking Water Treatment Clarifier
    作者: 吳容銘
    貢獻者: 淡江大學化學工程與材料工程學系
    日期: 2010-07
    上傳時間: 2011-10-13 22:33:45 (UTC+8)
    摘要: Over 50% drinking water was supplied to the Taiwan’s public by sludge blanket clarifiers (Chen et al., 2003; Lin et al., 2004). The sludge blanket performs dual functions as a filter as well as a particle coagulator. Coagulation, the chemistry-based treatment stage, controls the characteristics of the generated sludge layer, whereas sedimentation, the hydrodynamic treatment stage, controls sludge layer stability. The existence of a sludge blanket in clarifiers is thereby essential to produce quality effluent water. In addition, the flow dynamics is an important parameter for the design of clarifiers.
    The use of solids flux theory continues in many studies in the design and operation of sludge treatment processes (Takacs et al., 1991; Daigger, 1995; Wett, 2002). Ekama and Marais (2004) gave a survey on the development of one dimensional (1D) settler modeling. Although application of solids flux theory is good for studying the performance of clarifiers, it does not adequately describe the effect of hydrodynamic behavior in clarifiers (Narayanan et al., 2000). Computational fluid dynamics (CFD) has shown to be a powerful tool for resolving complex practical problems in engineering. (Hsu et al., 2007; Videla et al., 2008; Lin et al., 2008; Tao et al., 2008; Yang et al., 2007) Therefore some studies attempted to simulate full clarifiers via CFD (Deininger et al., 1998; Burger et al., 2005; Fan et al., 2007). Recently Wu et al. (2007) simulated flow pattern in a clarifier with porous medium as sludge blanket by 3D CFD. The first work to utilize a 3D, multiphase flow simulation for a clarifier is by Wu et al. (2008). Weiss et al. (2007) utilized non-Newtonian flow to model a circular secondary clarifier and showed that viscosity of sludge dominates the flow in clarifier. This study attempts to improve clarifier effluent quality by altering its geometric construction. The simulation is based on the sludge blanket clarifier at the Bansin Water Treatment Plant, Taiwan.
    Bansin Water Treatment Plant (BWTP) is in Banchiao City, Taipei County, Taiwan. About every 20 minutes sludge blanket overturns somewhere and effluent solid flux increases. The turbidity of the clarified water is generally too high to produce quality clean water after sand filtering. In this work, four types of constructions of clarifiers are simulated by 3D, multiphase flow model to improve clarifier effluent quality. Type A is the conventional clarifier used in BWTP. Type B changes inlet pipe to a large one (1.6 folds). Type C changes reaction well angle from 1200 to 900. Type D changes reaction well angle from 1200 to 600. As shown in previous research (Yang et al., 2008) that, the velocity of suspension in the reaction well is one of the factors affecting the quality of water discharge, so the improved method of Type B is expected to slow the velocity of flow by enlarging diameter of inlet pipe. The improvement method of Type C is the angle of 900 of reaction cover. It is hoped that the backflow could be limited within the reaction well, so that the residence time of suspension in the reaction well can be increased. The improved method for Type D reverses the whole reaction cover, so the water quality may not deteriorate for reason of easy outflow of the suspension from the reaction well.
    關聯: Computational Fluid Dynamics
    DOI: 10.5772/7113
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML51檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋