English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 53694/88316 (61%)
造访人次 : 10188573      在线人数 : 95
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/59964


    题名: Robust News Video Text Detection Based on Edges and Line-deletion
    作者: Yen, Shwu-Huey;Chang, Hsiao-Wei;Wang, Chia-Jen;Wang, Chun-Wei
    贡献者: 淡江大學資訊工程學系
    关键词: Information retrieval;Multiple frames integration;Video text;Text detection;Canny edge map;Black-white transition;Line-deletion
    日期: 2010-10
    上传时间: 2011-10-05 22:30:56 (UTC+8)
    出版者: Zographou: World Scientific and Engineering Academy and Society (W S E A S)
    摘要: This paper presents a robust and efficient text detection algorithm for news video. The proposed algorithm uses the temporal information of video and logical AND operation to remove most of irrelevant background. Then a window-based method by counting the black-and-white transitions is applied on the resulted edge map to obtain rough text blobs. Line deletion technique is used twice to refine the text blocks. The proposed algorithm is applicable to multiple languages (English, Japanese and Chinese), robust to text polarities (positive or negative), various character sizes (from 4×7 to 30×30), and text alignments (horizontal or vertical). Three metrics, recall (R), precision (P), and quality of bounding preciseness (Q), are adopted to measure the efficacy of text detection algorithms. According to the experimental results on various multilingual video sequences, the proposed algorithm has a 96% and above performance in all three metrics. Comparing to existing methods, our method has better performance especially in the quality of bounding preciseness that is crucial to later binarization process.
    關聯: WSEAS Transactions On Signal Processing 6(1), pp.186-195
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    1790-5052_6(1)p186-195.pdf1542KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈