Singapore: World Scientific Publishing Co. Pte. Ltd.
摘要:
Determining the structure of a protein is not an easy task, which usually involved a time-consuming and costly process in the web lab. Using computational methods to predict a protein's tertiary structure from its primary structure (the amino acid sequence) is desirable. Disordered regions are segments of a protein that do not have a fixed conformation, which makes the structure prediction harder. Also, these disordered regions are functionally important for a protein. In this research, we would like to identify such regions with a focus on selecting a proper feature set. Three feature selection methods, namely F-score, information gain (IG), and k-medoids clustering, are used for feature selection. The support vector machine (SVM) is then used for classification. The results show that the classification accuracy can be raised with a smaller feature set. The k-medoids clustering feature selection can reduce the number of features from 440 to 150 and improve the accuracy from 84.66 to 86.81% in five-fold cross validation. It also has a more stable performance than F-score and IG.
關聯:
Biomedical Engineering: Applications, Basis and Communications 22(2), pp.119-125