English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54546/89241 (61%)
造访人次 : 10577346      在线人数 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/59911


    题名: Face Detection using SVM-Based Classification
    作者: Yeh, Jih-Pin;Pai, I-Chun, Wang, Chun-Wei;Yang, Fu-Wen;Lin, Hwei-Jen
    贡献者: 淡江大學資訊工程學系
    关键词: face detection;skin color segmentation;RGB color space;HSV color space;support vector machine;SVM
    日期: 2009-08
    上传时间: 2011-10-05 22:26:08 (UTC+8)
    出版者: Allahabad: Pushpa Publishing House
    摘要: This paper proposes an improved version of our previously introduced face detection system based on skin color segmentation and neural networks. The new system, using a support vector machine (SVM) based method for learning and verification, consists of several stages. First, the system searches for the regions where faces might exist by using skin color information and forms a so-called skin map. After performing noise removal and some morphological operations on the skin map, it utilizes the aspect ratio of a face to find out possible face blocks, and then eye detection is carried out within each possible face block. If an eye pair is detected in a possible face block, a region is cropped according to the location of the two eyes, which is called a face candidate; otherwise, it is regarded as a non-face block. Finally, each of the face candidates is verified by a support vector machine. Experimental results reflect that the new version improves the verification accuracy of the previously proposed system.
    關聯: Far East Journal of Experimental and Theoretical Artificial Intelligence 3(2), pp.113-123
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈