淡江大學機構典藏:Item 987654321/59833
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58617/92280 (64%)
造访人次 : 562593      在线人数 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/59833


    题名: A Data Accessing Model for Dynamic Clustering of Object-Oriented Databases
    作者: 闕豪恩;Chueh, Hao-en;林丕靜;Lin, Nancy P.
    贡献者: 淡江大學資訊工程學系
    关键词: Data Accessing Model;Object-Oriented Database;Dynamic Clustering;Disk Rearrangement;Poisson Process Model
    日期: 2010-09
    上传时间: 2011-10-05 22:19:35 (UTC+8)
    出版者: Bethel: Binary Information Press
    摘要: For dynamic clustering of objects, a data accessing model of online object-oriented databases is proposed in this paper. Dynamic clustering for object-oriented databases is an important issue in database management systems. Most of the previous researches have focused on the schemes of the dynamic clustering to optimal disk rearrangement, and not many works have been done on the behavior of the data requested pattern. For the data accessing sequence to consolidate and advance the state of research in object clustering problem, a statistical model of data accessing behavior is proposed. The behavior of data accessing sequence can be described by Poisson Processing Model (PPM). The criterion we suggested for the dynamic clustering strategy is an iterative numerical method, two preselected values need to be chosen, which are used to bind the deviations of the object-probabilities and the percentage of the objects in the object space that we can do without reclustering of the objects.
    關聯: Journal of Computational Information Systems 6(9), pp.2787-2794
    DOI: 
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈