English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9306908      線上人數 : 1076
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/59809


    題名: The Role of Additional Information in Option Pricing: Estimation Issues for the State Space Model
    作者: Wang, Ren-Her;Aston, J. A. D.;Fuh, Cheng-Der
    貢獻者: 淡江大學財務金融學系
    關鍵詞: Kalman filter;Particle filter;Stochastic volatility model;Volatility forecasting
    日期: 2010-12
    上傳時間: 2011-10-05 20:56:36 (UTC+8)
    出版者: New York: Springer New York LLC
    摘要: We consider two competing financial state space models and investigate whether additional information in the form of option price data is helpful to the estimation of either the unobservable state variable (volatility) or the unknown parameters in the model. The complete discussion of the estimation problem in the presence of additional information involves decisions about filtering methods, the quality of the new information, the correlation between state variables and out-of-sample forecast performance. It is found that the state variable estimation is more sensitive than the parameter estimation to the correlation, information quality and the assumed linearity or non-linearity of the underlying model. As a result of the investigation of these factors, the particle filter is shown to be an attractive method for computing posterior
    distributions for these models.
    關聯: Computational Economics 36(4), pp.283-307
    DOI: 10.1007/s10614-010-9240-0
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0927-7099_36(4)p283-307.pdf316KbAdobe PDF333檢視/開啟
    0927-7099_36(4)p283-307.pdf316KbAdobe PDF2檢視/開啟
    index.html0KbHTML5檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋