淡江大學機構典藏:Item 987654321/5968
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57999/91535 (63%)
造访人次 : 13703687      在线人数 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/5968


    题名: 橢圓曲線的同基函數
    其它题名: 3-Isogenies on Elliptic Curves Y/sup 2/=X/sup 3/+D/sup 2/
    作者: 陳燕美
    贡献者: 淡江大學數學學系
    关键词: 橢圓曲線;同基函數;Mordell-Weil群;Selmer群;Shaferevich-Tate群;;Elliptic curve;Isogeny;Mordell-Weil group;Selmer group;Shaferevich-Tategroup
    日期: 1994
    上传时间: 2009-03-16 13:07:43 (UTC+8)
    摘要: 任一橢圓曲線之有理數點的集合,會形成一 個群,叫做Mordell-Weil群.已知此群可以由其中有 限點衍生出來,我們定義橢圓曲線的秩為其中 線性獨立的點數(取最大值).此秩在代數數論學 者之間一般預言可以是無窮大的;但至目前為 止,數學家們所發現最高的秩不過是21,無法尋 找到更高的秩值的原因在於其過程非常繁複, 而且需要大量的電腦計算.在本計畫中,我們首 先嘗試在某一特定族群中的橢圓曲線去尋找其 秩的估計,我們預期可以得到一個上限,此一上 限可以無窮大.在這樣的估計中有一項是未知 的,即Shaferevich-Tate群.我們預估可以得到下列不 等式:r+dim/sub 3/ Sha[ 3] =某整數(跟可以整除D的 質數的個數有關)其中r代表秩,Sha代表Shaferevich-Tate群,D是定義橢圓曲線(Y/sup 2/=X/sup 3/+D/sup 2/) 的係數.
    显示于类别:[數學學系暨研究所] 研究報告

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈