English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51756/86973 (60%)
Visitors : 8362190      Online Users : 109
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/5968


    Title: 橢圓曲線的同基函數
    Other Titles: 3-Isogenies on Elliptic Curves Y/sup 2/=X/sup 3/+D/sup 2/
    Authors: 陳燕美
    Contributors: 淡江大學數學學系
    Keywords: 橢圓曲線;同基函數;Mordell-Weil群;Selmer群;Shaferevich-Tate群;;Elliptic curve;Isogeny;Mordell-Weil group;Selmer group;Shaferevich-Tategroup
    Date: 1994
    Issue Date: 2009-03-16 13:07:43 (UTC+8)
    Abstract: 任一橢圓曲線之有理數點的集合,會形成一 個群,叫做Mordell-Weil群.已知此群可以由其中有 限點衍生出來,我們定義橢圓曲線的秩為其中 線性獨立的點數(取最大值).此秩在代數數論學 者之間一般預言可以是無窮大的;但至目前為 止,數學家們所發現最高的秩不過是21,無法尋 找到更高的秩值的原因在於其過程非常繁複, 而且需要大量的電腦計算.在本計畫中,我們首 先嘗試在某一特定族群中的橢圓曲線去尋找其 秩的估計,我們預期可以得到一個上限,此一上 限可以無窮大.在這樣的估計中有一項是未知 的,即Shaferevich-Tate群.我們預估可以得到下列不 等式:r+dim/sub 3/ Sha[ 3] =某整數(跟可以整除D的 質數的個數有關)其中r代表秩,Sha代表Shaferevich-Tate群,D是定義橢圓曲線(Y/sup 2/=X/sup 3/+D/sup 2/) 的係數.
    Appears in Collections:[數學學系暨研究所] 研究報告

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback