English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56826/90592 (63%)
造访人次 : 12112519      在线人数 : 105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58803


    题名: Theorems on partitioned matrices revisited and their applications to graph spectra
    作者: Chang, Ting-Chung;Tam, Bit-Shun;Wu, Shu-Hui
    贡献者: 淡江大學數學學系
    关键词: Graph spectra;Neighborhood equivalence class;Block-stochastic matrix;Laplacian;Signless laplacian
    日期: 2010-10
    上传时间: 2013-06-13 11:24:37 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.
    關聯: Linear Algebra and Its Applications 434(2), pp.559-581
    DOI: 10.1016/j.laa.2010.09.014
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0024-3795_434(2)p559-581.pdf312KbAdobe PDF121检视/开启
    0024-3795_434(2)p559-581.pdf312KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈