English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 50123/85142 (59%)
造訪人次 : 7907139      線上人數 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58803

    題名: Theorems on partitioned matrices revisited and their applications to graph spectra
    作者: Chang, Ting-Chung;Tam, Bit-Shun;Wu, Shu-Hui
    貢獻者: 淡江大學數學學系
    關鍵詞: Graph spectra;Neighborhood equivalence class;Block-stochastic matrix;Laplacian;Signless laplacian
    日期: 2010-10
    上傳時間: 2013-06-13 11:24:37 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.
    關聯: Linear Algebra and Its Applications 434(2), pp.559-581
    DOI: 10.1016/j.laa.2010.09.014
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0024-3795_434(2)p559-581.pdf312KbAdobe PDF105檢視/開啟
    0024-3795_434(2)p559-581.pdf312KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋