淡江大學機構典藏:Item 987654321/58766
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9367811      在线人数 : 14229
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/58766


    题名: On the reduced signless Laplacian spectrum of a degree maximal graph
    作者: Tam, Bit-Shun;Wu, Shu-Hui
    贡献者: 淡江大學數學學系
    关键词: Degree maximal graph;Reduced signless Laplacian;Signless Laplacian spectrum;Characteristic polynomial;Neighborhood equivalence class
    日期: 2010-03-15
    上传时间: 2011-10-01 21:09:37 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.
    關聯: Linear Algebra and its Applications 432(7), pp.1734-1756
    DOI: 10.1016/j.laa.2009.11.031
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0024-3795_432(7)p1734-1756.pdf313KbAdobe PDF264检视/开启
    0024-3795_432(7)p1734-1756.pdf313KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈