English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58335/91896 (63%)
造訪人次 : 1903      線上人數 : 102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58759

    題名: Noether’s Problem and the Unramified Brauer Group for Groups of Order 64
    作者: Chu, Huah;Hu, Shou-Jen;Kang, Ming-Chang;Kunyavskii, Boris E.
    貢獻者: 淡江大學數學學系
    日期: 2010
    上傳時間: 2011-10-01 21:09:05 (UTC+8)
    出版者: Oxford: Oxford University Press
    摘要: Let K be any field and G be a finite group acting on the rational function field K(xg : g ∈ G) by h ⋅ xg = xhg for any g, h ∈ G. Define K(G) = K(xg : g ∈ G)G. Noether’s problem asks whether K(G) is rational (purely transcendental) over K. For any prime number p, Bogomolov shows that there is some group G of order p6 with B0(G) ≠ 0, where B0(G) is the unramified Brauer group of ℂ(G), which is the subgroup of H2(G, ℚ/ℤ) consisting of cohomology classes whose restrictions to all bicyclic subgroups are zero. As a consequence, ℂ(G) is not rational over ℂ. In this paper, we will classify all the groups G of order 64 with B0(G) ≠ 0; for groups G satisfying B0(G) = 0, we will show that ℂ(G) is rational except possibly for five cases.
    關聯: International Mathematics Research Notices 2010(12), pp.2329-2366
    DOI: 10.1093/imrn/rnp217
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1073-7928_2010(12)p2329-2366.pdf266KbAdobe PDF139檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋