請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/58759
|
題名: | Noether’s Problem and the Unramified Brauer Group for Groups of Order 64 |
作者: | Chu, Huah;Hu, Shou-Jen;Kang, Ming-Chang;Kunyavskii, Boris E. |
貢獻者: | 淡江大學數學學系 |
日期: | 2010 |
上傳時間: | 2011-10-01 21:09:05 (UTC+8) |
出版者: | Oxford: Oxford University Press |
摘要: | Let K be any field and G be a finite group acting on the rational function field K(xg : g ∈ G) by h ⋅ xg = xhg for any g, h ∈ G. Define K(G) = K(xg : g ∈ G)G. Noether’s problem asks whether K(G) is rational (purely transcendental) over K. For any prime number p, Bogomolov shows that there is some group G of order p6 with B0(G) ≠ 0, where B0(G) is the unramified Brauer group of ℂ(G), which is the subgroup of H2(G, ℚ/ℤ) consisting of cohomology classes whose restrictions to all bicyclic subgroups are zero. As a consequence, ℂ(G) is not rational over ℂ. In this paper, we will classify all the groups G of order 64 with B0(G) ≠ 0; for groups G satisfying B0(G) = 0, we will show that ℂ(G) is rational except possibly for five cases. |
關聯: | International Mathematics Research Notices 2010(12), pp.2329-2366 |
DOI: | 10.1093/imrn/rnp217 |
顯示於類別: | [應用數學與數據科學學系] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
1073-7928_2010(12)p2329-2366.pdf | | 266Kb | Adobe PDF | 257 | 檢視/開啟 |
|
在機構典藏中所有的資料項目都受到原著作權保護.
|