English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49647/84944 (58%)
Visitors : 7711977      Online Users : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58752


    Title: Methods for Simultaneously Identifying Coherent Local Clusters with Smooth Global Patterns in Gene Expression Profiles
    Authors: Tien, Yin-jing;Lee, Yun-shien;Wu, Han-ming;Chen, Chun-houh
    Contributors: 淡江大學數學學系
    Date: 2008-03
    Issue Date: 2011-10-01 21:08:34 (UTC+8)
    Publisher: London: BioMed Central Ltd.
    Abstract: Background: The hierarchical clustering tree (HCT) with a dendrogram [1] and the singular value decomposition (SVD) with a dimension-reduced representative map [2] are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures.
    Results: This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen [3] as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends.
    Conclusion: We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP
    Relation: BMC Bioinformatics 9, 155(16pages)
    DOI: 10.1186/1471-2105-9-155
    Appears in Collections:[數學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1471-2105_9p155(16pages).pdf1141KbAdobe PDF126View/Open
    index.html0KbHTML126View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback