English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10092620      線上人數 : 20531
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/58752


    題名: Methods for Simultaneously Identifying Coherent Local Clusters with Smooth Global Patterns in Gene Expression Profiles
    作者: Tien, Yin-jing;Lee, Yun-shien;Wu, Han-ming;Chen, Chun-houh
    貢獻者: 淡江大學數學學系
    日期: 2008-03
    上傳時間: 2011-10-01 21:08:34 (UTC+8)
    出版者: London: BioMed Central Ltd.
    摘要: Background: The hierarchical clustering tree (HCT) with a dendrogram [1] and the singular value decomposition (SVD) with a dimension-reduced representative map [2] are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures.
    Results: This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen [3] as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends.
    Conclusion: We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP
    關聯: BMC Bioinformatics 9, 155(16pages)
    DOI: 10.1186/1471-2105-9-155
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    1471-2105_9p155(16pages).pdf1141KbAdobe PDF239檢視/開啟
    index.html0KbHTML222檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋