English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8011479      Online Users : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58700


    Title: Certain classes of polynomial expansions and multiplication formulas
    Authors: 陳功宇;Chen, Kung-yu;Chyan, C. J.;Srivastava, H. M.錢傳仁= Chyan, Chuan-jen;Srivastava, H. M.;Chen, Kung-yu
    Contributors: 淡江大學數學學系
    Keywords: Polynomial expansions;Multiplication formulas;Bernoulli and Euler polynomials;Generalized hypergeometric polynomials;Generating functions;Dixon's summation theorem;Jacobi polynomials;Laguerre polynomials;Generalized Bessel polynomials;Hermite polynomials;Gegenbauer (or ultraspherical) polynomials;Generalized Rice polynomials;Chu-Vandermonde theorem;Legendre (or spherical) polynomials;Chebyshev polynomials
    Date: 2003-01-01
    Issue Date: 2011-10-01 21:04:21 (UTC+8)
    Abstract: The authors first present a class of expansions in a series of Bernoulli polyomials and then show how this general result can be applied to yield various (known or new) polynomial expansions. The corresponding expansion problem involving the Euler polynomials is then considered in an analogous manner. Several general multiplication formulas, involving (for example) certain families of generalized hypergeometric polynomials, are also investigated in the context especially of the classical Jacobi, Laguerre, and other related orthogonal polynomials.
    Relation: Mathematical and computer modelling 37(1-2), pp.135-154
    DOI: 10.1016/S0895-7177(03)80010-9
    Appears in Collections:[數學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML27View/Open
    index.html0KbHTML3View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback