English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385425      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/58680


    題名: A note on estimation of log-linear model with measurement errors and without extra informations.
    作者: 黃逸輝;林宜河
    貢獻者: 淡江大學數學學系
    關鍵詞: Errors-in-variables;measurment error;log-linear;Poisson regression
    日期: 2005-09
    上傳時間: 2011-10-01 21:02:48 (UTC+8)
    摘要: In the analysis of measurement error models, the naive estimators arc inconsistent and biased. For consistent estimation, one usually needs extra information such as additional observed variables or known parameters. A common assumption about extra information is the knowledge of measurement errors' variances. However, such variances arc usually ”known” by estimates computed from replicate measurements or some external sources. In practice, it may happen that replicates arc hard to obtain or some extra information may not be available. Both can cause problems in knowing the variances, and flaw any estimation method based on such information. In the present paper, we develop an estimation method for the log-linear model with measurement errors and without extra informations. Furthermore, this method doesn't require any distribution assumption on the measurement error ridden covariate. It is applicable when the measurement error ridden covariate is treated as fixed but unknown constant. Briefly, a functional measurement error model can be analyzed without extra information, which is an uncommon phenomenon in error-in-variables models.
    關聯: 中國統計學報 43,頁353
    DOI: 10.29973/JCSA.200509.0006
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A note on estimation of log-linear model with measurement errors and without extra informations.pdf769KbAdobe PDF0檢視/開啟
    index.html0KbHTML177檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋