English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55184/89457 (62%)
造訪人次 : 10662048      線上人數 : 18
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58497

    題名: Hybrid Feature Selection by Combining Filters and Wrappers
    作者: Hsu, Hui-Huang;Hsieh, Cheng-Wei;Lu, Ming-Da
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Feature selection;Filters;Wrappers;Support vector machine;Disordered protein;Microarray
    日期: 2011-07
    上傳時間: 2011-10-01 12:00:56 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: Feature selection aims at finding the most relevant features of a problem domain. It is very helpful in improving computational speed and prediction accuracy. However, identification of useful features from hundreds or even thousands of related features is a nontrivial task. In this paper, we introduce a hybrid feature selection method which combines two feature selection methods – the filters and the wrappers. Candidate features are first selected from the original feature set via computationally-efficient filters. The candidate feature set is further refined by more accurate wrappers. This hybrid mechanism takes advantage of both the filters and the wrappers. The mechanism is examined by two bioinformatics problems, namely, protein disordered region prediction and gene selection in microarray cancer data. Experimental results show that equal or better prediction accuracy can be achieved with a smaller feature set. These feature subsets can be obtained in a reasonable time period.
    關聯: Expert Systems with Applications 38(7), pp.8144-8150
    DOI: 10.1016/j.eswa.2010.12.156
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0957-4174_38(7)p8144-8150.pdf391KbAdobe PDF232檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋