淡江大學機構典藏:Item 987654321/58496
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9982549      在线人数 : 19384
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/58496


    题名: Feature Selection via Correlation Coefficient Clustering
    作者: Hsu, Hui-Huang;Hsieh, Cheng-Wei
    贡献者: 淡江大學資訊工程學系
    关键词: Feature Selection;Clustering;Correlation Coefficient;Support Vector Machines (SVMs);Machine Learning;Classification
    日期: 2010-12
    上传时间: 2011-10-01 12:00:52 (UTC+8)
    出版者: Oulu: Academy Publisher
    摘要: Feature selection is a fundamental problem in machine learning and data mining. How to choose the most problem-related features from a set of collected features is essential. In this paper, a novel method using correlation coefficient clustering in removing similar/redundant features is proposed. The collected features are grouped into clusters by measuring their correlation coefficient values. The most class-dependent feature in each cluster is retained while others in the same cluster are removed. Thus, the most class-related and mutually unrelated features are identified. The proposed method was applied to two datasets: the disordered protein dataset and the Arrhythmia (ARR) dataset. The experimental results show that the method is superior to other feature selection methods in speed and/or accuracy. Detail discussions are given in the paper.
    關聯: Journal of Software 5(12), pp.1371-1377
    DOI: 10.4304/jsw.5.12.1371-1377
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1796-217X_5(12)p1371-1377.pdf449KbAdobe PDF382检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈