English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58791/92483 (64%)
造訪人次 : 625965      線上人數 : 32
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58475

    題名: Evaluation of Multiple Imputation for Longitudinal Ordinal Data under MCAR and MAR Missing-Data Mechanisms
    作者: Tuan, Li-Wen;Chen, Yi-Ju;Li, Pai-Ling;Lin, Kuo-Chin
    貢獻者: 淡江大學統計學系
    關鍵詞: MAR;MCAR;Multiple imputation;Ordinal scale
    日期: 2011-06
    上傳時間: 2011-10-01 01:10:54 (UTC+8)
    出版者: Toroku: ICIC International
    摘要: Multiple imputation can be used to solve the problem of missing data that is a common occurrence in longitudinal studies. An imputation strategy proposed by Demirtas and Hedeker (Statistics in Medicine 2008; 27, 4086-4093) is to deal with incomplete longitudinal ordinal data, which converts discrete outcomes to continuous outcomes by generating normal values, employs multiple method based on normality, and reconverts to binary scale as well as ordinal one. The performance of multiple imputation in terms of standardized bias, root-mean-squared error and coverage percentage under missing completely at random (MCAR) and missing at random (MAR) was discussed by various configurations. The simulated results indicated this mutation strategy is suitable for most of incomplete data under these two missing-data mechanisms.
    關聯: ICIC Express Letters 5(6), pp.1833-1838
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1881-803X_5(6)_p1833-1838.pdf5240KbAdobe PDF4檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋