English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56859/90577 (63%)
造访人次 : 12291606      在线人数 : 71
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58475

    题名: Evaluation of Multiple Imputation for Longitudinal Ordinal Data under MCAR and MAR Missing-Data Mechanisms
    作者: Tuan, Li-Wen;Chen, Yi-Ju;Li, Pai-Ling;Lin, Kuo-Chin
    贡献者: 淡江大學統計學系
    关键词: MAR;MCAR;Multiple imputation;Ordinal scale
    日期: 2011-06
    上传时间: 2011-10-01 01:10:54 (UTC+8)
    出版者: Toroku: ICIC International
    摘要: Multiple imputation can be used to solve the problem of missing data that is a common occurrence in longitudinal studies. An imputation strategy proposed by Demirtas and Hedeker (Statistics in Medicine 2008; 27, 4086-4093) is to deal with incomplete longitudinal ordinal data, which converts discrete outcomes to continuous outcomes by generating normal values, employs multiple method based on normality, and reconverts to binary scale as well as ordinal one. The performance of multiple imputation in terms of standardized bias, root-mean-squared error and coverage percentage under missing completely at random (MCAR) and missing at random (MAR) was discussed by various configurations. The simulated results indicated this mutation strategy is suitable for most of incomplete data under these two missing-data mechanisms.
    關聯: ICIC Express Letters 5(6), pp.1833-1838
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    1881-803X_5(6)_p1833-1838.pdf5240KbAdobe PDF4检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈