English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55025/89277 (62%)
造訪人次 : 10606167      線上人數 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/57629

    題名: Adaptive Dynamic RBF Fuzzy Neural Controller Design with a Constructive Learning
    作者: Hsu, Chun-Fei;Lin, Chih-Min;Li, Ming-Chia
    貢獻者: 淡江大學電機工程學系
    關鍵詞: fuzzy system;adaptive control;structuring learning;parameter learning
    日期: 2011-09
    上傳時間: 2011-09-22 20:27:57 (UTC+8)
    出版者: 台北市:中華民國模糊學會
    摘要: Radial basis function (RBF) network can be viewed as a fuzzy rule base with specified membership functions and fuzzy inference operations. However, there is a trade-off between the approximation performance of RBF network and the number of hidden neurons. To tackle this problem, this paper proposes a dynamic RBF (DRBF) network with a constructive learning. This DRBF network not only can create the new hidden neurons, but also can prune the insignificant hidden neurons. Then, an adaptive dynamic RBF fuzzy neural control (ADRFNC) system, including a neural controller and a saturation compensator, is developed. The neural controller uses a DRBF network to on-line mimic an ideal controller and the saturation compensator is designed to dispel the approximation error introduced by the neural controller. Finally, the proposed ADRFNC system is applied to a chaotic circuit and a DC motor control system. Simulation and experimental results show the proposed ADRFNC system can achieve a favorable tracking performance when the controller's parameters have been learned and the network structure has been constructed by the proposed learning algorithm.
    關聯: International Journal of Fuzzy Systems 13(3), pp.175-184
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    ijfs11-3-r-3-IJFS_DRBF_final_v1.pdf論文檔案302KbAdobe PDF4檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋